The Prokaryotic Complex of Modern and Buried Soils on the Kamchatka Peninsula

Author:

Manucharova Natalia A.ORCID,Karimov Timur D.,Pevzner Maria M.,Nechushkin Roman I.,Pozdnyakov Lev A.ORCID,Stepanov Pavel Y.,Stepanov Alexey L.

Abstract

A prokaryotic heterotrophic mesophilic community was studied in volcanic soil samples from Kamchatka. A phylogenetic and physiological characterization of the prokaryotic complex of modern and buried soils of the Kamchatka Peninsula is given. Volcanic Paleolithic soils (2500 and 11,300 years old) and their modern equivalents were investigated. It was found that the biomass of metabolically active prokaryotes in modern volcanic and Paleolithic soils reached 50 and 40 µg/g, respectively. The proportion of archaea in the metabolically active prokaryotic complex varied from 20% to 30% and increased in variants with the application of the nitrogen-containing biopolymer chitin. The application of the additional resource to paleovolcanic soils led to an incremental increase in the proportion of metabolically active prokaryotes, which reached 50% of the total prokaryotic biomass detected, indicating the high metabolic potential of the considered soils. Phylogenetic structure characteristics of the prokaryotic metabolically active component of modern and buried volcanic soil were established by molecular biology methods (metagenomic analysis, FISH method). The phylum Proteobacteria (74%), Acidobacteria, and Actinobacteria (14% combined) were dominant in modern soils; phylum Acidobacteria (51.8%) was dominant in paleosoils, whereas Chloroflexi (21%) and Proteobacteria (9%) were subdominant. It was determined that the potential activity of the microbial hydrolytic community, as measured by the relative response to the added resource (chitin), was found to increase in a series from modern to paleovolcanic soil. It was demonstrated that several key genes of the nitrogen cycle responsible for the processes of molecular nitrogen fixation, nitrification, and denitrification (nifH, amoA, nirK) were present in both modern and buried horizons.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3