Targeting the DNA Damage Response to Increase Anthracycline-Based Chemotherapy Cytotoxicity in T-Cell Lymphoma

Author:

Magni Martina,Paolizzi Chiara,Monfrini Chiara,Vella Cristina,Corradini PaoloORCID,Carniti CristianaORCID

Abstract

Mature T-cell lymphomas (MTCLs) represent a heterogeneous group of aggressive non-Hodgkin lymphomas comprising different entities. Anthracycline-based regimens are considered the standard of care in the front-line treatment. However, responses to these approaches have been neither adequate nor durable, and new treatment strategies are urgently needed to improve survival. Genomic instability is a common feature of cancer cells and can be caused by aberrations in the DNA damage response (DDR) and DNA repair mechanisms. Consistently, molecules involved in DDR are being targeted to successfully sensitize cancer cells to chemotherapy. Recent studies showed that some hematological malignancies display constitutive DNA damage and intrinsic DDR activation, but these features have not been investigated yet in MTCLs. In this study, we employed a panel of malignant T cell lines, and we report for the first time the characterization of intrinsic DNA damage and basal DDR activation in preclinical models in T-cell lymphoma. Moreover, we report the efficacy of targeting the apical kinase ATM using the inhibitor AZD0156, in combination with standard chemotherapy to promote apoptotic cell death. These findings suggest that DDR is an attractive pathway to be pharmacologically targeted when developing novel therapies and improving MTCL patients’ outcomes.

Funder

Italian Association for Cancer Research

Associazione Italiana Leucemie Linfomi e Mielomi

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3