Pleiotropic Roles of Scavenger Receptors in Circadian Retinal Phagocytosis: A New Function for Lysosomal SR-B2/LIMP-2 at the RPE Cell Surface

Author:

Rieu Quentin,Bougoüin Antoine,Zagar Yvrick,Chatagnon Jonathan,Hamieh Abdallah,Enderlin Julie,Huby ThierryORCID,Nandrot Emeline F.ORCID

Abstract

The retinal phagocytic machinery resembles the one used by macrophages to clear apoptotic cells. However, in the retina, the permanent contact between photoreceptor outer segments (POS) and retinal pigment epithelial (RPE) cells requires a tight control of this circadian machinery. In addition to the known receptors synchronizing POS internalization, several others are expressed by RPE cells. Notably, scavenger receptor CD36 has been shown to intervene in the internalization speed. We thus investigated members of the scavenger receptor family class A SR-AI and MARCO and class B CD36, SR-BI and SR-B2/LIMP-2 using immunoblotting, immunohisto- and immunocytochemistry, lipid raft flotation gradients, phagocytosis assays after siRNA/antibody inhibition, RT-qPCR and western blot analysis along the light:dark cycle. All receptors were expressed by RPE cell lines and tissues and colocalized with POS, except SR-BI. All receptors were associated with lipid rafts, and even more upon POS challenge. SR-B2/LIMP-2 inhibition suggested a role in the control of the internalization speed similar to CD36. In vivo, MARCO and CD36 displayed rhythmic gene and protein expression patterns concomitant with the phagocytic peak. Taken together, our results indicate that CD36 and SR-B2/LIMP-2 play a direct regulatory role in POS phagocytosis dynamics, while the others such as MARCO might participate in POS clearance by RPE cells either as co-receptors or via an indirect process.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3