Single Cell Self-Paced Clustering with Transcriptome Sequencing Data

Author:

Zhao PengORCID,Xu Zenglin,Chen Junjie,Ren Yazhou,King IrwinORCID

Abstract

Single cell RNA sequencing (scRNA-seq) allows researchers to explore tissue heterogeneity, distinguish unusual cell identities, and find novel cellular subtypes by providing transcriptome profiling for individual cells. Clustering analysis is usually used to predict cell class assignments and infer cell identities. However, the performance of existing single-cell clustering methods is extremely sensitive to the presence of noise data and outliers. Existing clustering algorithms can easily fall into local optimal solutions. There is still no consensus on the best performing method. To address this issue, we introduce a single cell self-paced clustering (scSPaC) method with F-norm based nonnegative matrix factorization (NMF) for scRNA-seq data and a sparse single cell self-paced clustering (sscSPaC) method with l21-norm based nonnegative matrix factorization for scRNA-seq data. We gradually add single cells from simple to complex to our model until all cells are selected. In this way, the influences of noisy data and outliers can be significantly reduced. The proposed method achieved the best performance on both simulation data and real scRNA-seq data. A case study about human clara cells and ependymal cells scRNA-seq data clustering shows that scSPaC is more advantageous near the clustering dividing line.

Funder

a key program of fundamental research from Shenzhen Science and Technology Innovation Commission

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3