Abstract
Single cell RNA sequencing (scRNA-seq) allows researchers to explore tissue heterogeneity, distinguish unusual cell identities, and find novel cellular subtypes by providing transcriptome profiling for individual cells. Clustering analysis is usually used to predict cell class assignments and infer cell identities. However, the performance of existing single-cell clustering methods is extremely sensitive to the presence of noise data and outliers. Existing clustering algorithms can easily fall into local optimal solutions. There is still no consensus on the best performing method. To address this issue, we introduce a single cell self-paced clustering (scSPaC) method with F-norm based nonnegative matrix factorization (NMF) for scRNA-seq data and a sparse single cell self-paced clustering (sscSPaC) method with l21-norm based nonnegative matrix factorization for scRNA-seq data. We gradually add single cells from simple to complex to our model until all cells are selected. In this way, the influences of noisy data and outliers can be significantly reduced. The proposed method achieved the best performance on both simulation data and real scRNA-seq data. A case study about human clara cells and ependymal cells scRNA-seq data clustering shows that scSPaC is more advantageous near the clustering dividing line.
Funder
a key program of fundamental research from Shenzhen Science and Technology Innovation Commission
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献