Abstract
Combined AntiRetroviral Treatments (cARTs) used for HIV infection may result in varied metabolic complications, which in some cases, may be related to patient genetic factors, particularly microRNAs. The use of monozygotic twins, differing only for HIV infection, presents a unique and powerful model for the controlled analysis of potential alterations of miRNAs regulation consequent to cART treatment. Profiling of 2578 mature miRNA in the subcutaneous (SC) adipose tissue and plasma of monozygotic twins was investigated by the GeneChip® miRNA 4.1 array. Real-time PCR and ddPCR experiments were performed in order to validate differentially expressed miRNAs. Target genes of deregulated miRNAs were predicted by the miRDB database (prediction score > 70) and enrichment analysis was carried out with g:Profiler. Processes in SC adipose tissue most greatly affected by miRNA up-regulation included (i) macromolecular metabolic processes, (ii) regulation of neurogenesis, and (iii) protein phosphorylation. Furthermore, KEGG analysis revealed miRNA up-regulation involvement in (i) insulin signaling pathways, (ii) neurotrophin signaling pathways, and (iii) pancreatic cancer. By contrast, miRNA up-regulation in plasma was involved in (i) melanoma, (ii) p53 signaling pathways, and (iii) focal adhesion. Our findings suggest a mechanism that may increase the predisposition of HIV+ patients to insulin resistance and cancer.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献