Circulating Vitreous microRNA as Possible Biomarker in High Myopic Eyes with Macular Hole

Author:

Ando Yoshimasa,Keino Hiroshi,Inoue Makoto,Hirota Kazunari,Takahashi HiroyukiORCID,Sano Kimihiko,Koto Takashi,Sato Tomohito,Takeuchi MasaruORCID,Hirakata Akito

Abstract

High myopia is a major cause of irreversible visual impairment globally. In the present study, we investigated the microRNA (miRNA) profile in the vitreous of macular hole (MH) and high myopic MH. We performed miRNA analysis using TaqMan® Low Density Arrays (Thermo Fisher Scientific, Waltham, MA, USA) to investigate the circulating vitreous miRNA profile from patients with MH (axial length < 26.5 mm, n = 11) and high myopic MH (axial length ≥ 26.5 mm, n = 11) who underwent pars plana vitrectomy. The vitreous inflammatory cytokine signature was examined in high myopic MH eyes using a multiplex assay. A miRNA-Array analysis revealed that let-7c was significantly up-regulated and miR-200a was significantly down-regulated in high myopic MH eyes compared to those in MH eyes. The bioinformatics analysis for up-regulated miRNA targeted gene identified 23 pathways including mitogen-activated protein kinase (MAPK) and several inflammatory signaling pathways, whereas the bioinformatics analysis for down-regulated miRNA targeted genes showed 32 enriched pathways including phosphoinositide 3-kinase/protein kinase B (PI3K/AKT). The levels of inflammatory cytokines including IP-10, IFN-γ, and MCP-1 were significantly higher in the vitreous of high myopic MH eyes. These results suggest that specific miRNAs expressed in the vitreous may be associated with the pathological condition of high myopic MH and the above mentioned miRNAs may contribute to the development of inflammatory status in the vitreous of high myopic eyes.

Funder

Research grant from Kyorin University, Tokyo, Japan.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3