Abstract
A series of poly(ethylene-co-vinyl alcohol)/titanium dioxide (PEVAL/TiO2) nanocomposites containing 1, 2, 3, 4 and 5 wt% TiO2 were prepared by the solvent casting method. These prepared hybrid materials were characterized by Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The pores and their interconnections inside these nanocomposites were created using naphthalene microparticles used as a porogen after having been extracted by sublimation under a high vacuum at temperatures slightly below the glass transition temperature. A cellular activity test of these hybrid materials was performed on human gingival fibroblast cells (HGFs) in accordance with ISO 10993-5 and ISO 10993-12 standards. The bioviability (cell viability) of HGFs was evaluated after 1, 4 and 7 days using Alamar Blue®. The results were increased cell activity throughout the different culture times and a significant increase in cell activity in all samples from Day 1 to Day 7, and all systems tested showed significantly higher cell viability than the control group on Day 7 (p < 0.002). The adhesion of HGFs to the scaffolds studied by SEM showed that HGFs were successfully cultured on all types of scaffolds.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference60 articles.
1. Tissue Engineering: Fundamentals and Applications;Ikada,2011
2. Tissue Engineering Using Ceramics and Polymers;Boccaccini,2014
3. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration
4. Porous scaffolds for bone regeneration
5. Scaffold for bone tissue engineering;Tariverdian,2019
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献