A New Method for the Visualization of Living Dopaminergic Neurons and Prospects for Using It to Develop Targeted Drug Delivery to These Cells

Author:

Blokhin VictorORCID,Lavrova Alina V.,Surkov Sergey A.,Mingazov Eduard R.,Gretskaya Natalia M.,Bezuglov Vladimir V.,Ugrumov Michael V.

Abstract

This is the first study aiming to develop a method for the long-term visualization of living nigrostriatal dopaminergic neurons using 1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine-BODIPY (GBR-BP), the original fluorescent substance, which is a derivative of GBR-12909, a dopamine uptake inhibitor. This method is based on the authors’ hypothesis about the possibility of specifically internalizing into dopaminergic neurons substances with a high affinity for the dopamine transporter (DAT). Using a culture of mouse embryonic mesencephalic and LUHMES cells (human embryonic mesencephalic cells), as well as slices of the substantia nigra of adult mice, we have obtained evidence that GBR-BP is internalized specifically into dopaminergic neurons in association with DAT via a clathrin-dependent mechanism. Moreover, GBR-BP has been proven to be nontoxic. As we have shown in a primary culture of mouse metencephalon, GBR-BP is also specifically internalized into some noradrenergic and serotonergic neurons, but is not delivered to nonmonoaminergic neurons. Our data hold great promise for visualization of dopaminergic neurons in a mixed cell population to study their functioning, and can also be considered a new approach for the development of targeted drug delivery to dopaminergic neurons in pathology, including Parkinson’s disease.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3