Abstract
The hydrothermal approach has been used to fabricate a heterojunction of n-aluminum-doped ZnO nanorods/p-B-doped diamond (n-Al:ZnO NRs/p-BDD). It exhibits a significant increase in photoluminescence (PL) intensity and a blue shift of the UV emission peak when compared to the n-ZnO NRs/p-BDD heterojunction. The current voltage (I-V) characteristics exhibit excellent rectifying behavior with a high rectification ratio of 838 at 5 V. The n-Al:ZnO NRs/p-BDD heterojunction shows a minimum turn-on voltage (0.27 V) and reverse leakage current (0.077 μA). The forward current of the n-Al:ZnO NRs/p-BDD heterojunction is more than 1300 times than that of the n-ZnO NRs/p-BDD heterojunction at 5 V. The ideality factor and the barrier height of the Al-doped device were found to decrease. The electrical transport behavior and carrier injection process of the n-Al:ZnO NRs/p-BDD heterojunction were analyzed through the equilibrium energy band diagrams and semiconductor theoretical models.
Funder
National Natural Science Foundation of China
the Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province, the Science and Technology Plan of Youth Innovation Team for Universities of Shandong Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献