Abstract
Histidine (His) is widely involved in the structure and function of biomolecules. Transition-metal ions, such as Zn2+ and Cu2+, widely exist in biological environments, and they are crucial to many life-sustaining physiological processes. Herein, by employing density function calculations, we theoretically show that the water affinity of His can be enhanced by the strong cation–π interaction between His and Zn2+ and Cu2+. Further, the solubility of His is experimentally demonstrated to be greatly enhanced in ZnCl2 and CuCl2 solutions. The existence of cation–π interaction is demonstrated by fluorescence, ultraviolet (UV) spectroscopy and nuclear magnetic resonance (NMR) experiments. These findings are of great importance for the bioavailability of aromatic drugs and provide new insight for understanding the physiological functions of transition metal ions.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献