Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature

Author:

Yu JiachengORCID,Cao Changqian,Fang Fengjiao,Pan YongxinORCID

Abstract

Iron oxide nanoparticles have attracted a great deal of research interest in recent years for magnetic hyperthermia therapy owing to their biocompatibility and superior thermal conversion efficiency. Magnetoferritin is a type of biomimetic superparamagnetic iron oxide nanoparticle in a ferritin cage with good monodispersity, biocompatibility, and natural hydrophilicity. However, the magnetic hyperthermic efficiency of this kind of nanoparticle is limited by the small size of the mineral core as well as its low synthesis temperature. Here, we synthesized a novel magnetoferritin particle by using a recombinant ferritin from the hyperthermophilic archaeon Pyrococcus furiosus as a template with high iron atom loading of 9517 under a designated temperature of 90 °C. Compared with the magnetoferritins synthesized at 45 and 65 °C, the one synthesized at 90 °C displays a larger average magnetite and/or maghemite core size of 10.3 nm. This yields an increased saturation magnetization of up to 49.6 emu g−1 and an enhanced specific absorption rate (SAR) of 805.3 W g−1 in an alternating magnetic field of 485.7 kHz and 49 kA m−1. The maximum intrinsic loss power (ILP) value is 1.36 nHm2 kg−1. These results provide new insights into the biomimetic synthesis of magnetoferritins with enhanced hyperthermic efficiency and demonstrate the potential application of magnetoferritin in the magnetic hyperthermia of tumors.

Funder

National Natural Science Foundation of China

the Key Research Program of the Institute of Geology and Geophysics, CAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3