Combinational Scheduling Model Considering Multiple Vehicle Sizes

Author:

Gong Liang,Li Yinzhen,Xu Dejie

Abstract

Urban public transport is an effective way to solve urban traffic problems and promote sustainable development of urban traffic. A scientific operation scheduling system has an important guiding significance for optimizing the configuration of urban public transport capacity resources, improving the level of operation organization and management, and providing for the sustainability of the transportation system. According to the inhomogeneous distribution of passenger flow along transit lines, this study develops a combinational scheduling model in which the enterprise supplies zonal service based on regular service. The objective function minimizes the sum of passenger travel cost and operation cost, and the simulated annealing algorithm is designed to solve the optimization model. This paper abstracts an ideal example by taking a real-world case of Bus Line 131 in Lanzhou, China. The numerical example is used to verify the validity of the model and algorithm. Results show that the combinational operation scheme can effectively satisfy passengers’ demand and reduce the total cost by 7.03% in comparison with the regular operation system. The optimal combinational system with the lowest total cost can increase the vehicle load factor and improve the utilization ratio.

Funder

National Natural Science Foundation of China

Young Scholars Science Foundation of Lanzhou Jiaotong University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference34 articles.

1. Improving urban public transport service using new timetabling strategies with different vehicle sizes

2. Service optimization for bus corridors with short-turn strategies and variable vehicle size

3. Combinatorial optimization model of multi-modal transit scheduling;Ming;Comput. Sci.,2015

4. Study on combinational scheduling between inter-zone vehicle and regular vehicle for urban public transit;Hu;J. Wuhan Univ. Technol.,2012

5. Mixed Scheduling Model for Zonal and Full-Length Vehicles With Capacity Limitation;Wu;J. Beijing Univ. Technol.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3