Cloud-Based Machine Learning for Flood Policy Recommendations in Makassar City, Indonesia

Author:

Rimba Andi Besse1ORCID,Arumansawang Andi2,Utama I Putu Wira34ORCID,Chapagain Saroj Kumar5,Bunga Made Nia46,Mohan Geetha7,Setiawan Kuncoro Teguh8,Osawa Takahiro9

Affiliation:

1. Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Tokyo 135-8548, Japan

2. Karya Alam Selaras Ltd., Citra Land, Jl. Talassa City Block 37 A Kapasa, Makassar 90245, Indonesia

3. Development Planning Agency of Bali Province, Jl. Cok Agung Tresna, Sumerta Kelod, Denpasar City 80239, Indonesia

4. Doctoral Program of Environmental Science, Udayana University, Jl. P.B. Sudirman Denpasar, Bali 80114, Indonesia

5. Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), United Nations University, Ammonstrasse 74, 01067 Dresden, Germany

6. Fisheries Faculty, The University of 45 Mataram, Jl. Imam Bonjol No. 45 Cakranegara, Mataram City 83239, Indonesia

7. Global Research Centre for Advanced Sustainability Science (GRASS), University of Toyama, 3190 Gofuku, Toyama City 930-8555, Japan

8. Research Center for Remote Sensing, BRIN, Jl. Raya Jakarta Bogor Km 46, Cibinong, Bogor 16911, Indonesia

9. Center for Remote and Application of Satellite Remote Sensing, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan

Abstract

Makassar City frequently experiences monsoonal floods, typical of a tropical city in Indonesia. However, there is no high-accuracy flood map for flood inundation. Examining the flood inundation area would help to provide a suitable flood policy. Hence, the study utilizes multiple satellite data sources on a cloud-based platform, integrating the physical factors of a flood (i.e., land use data and digital elevation model—DEM—data) with the local government’s urban land use plan and existing drainage networks. The research aims to map the inundation area, identify the most vulnerable land cover, slope, and elevation, and assess the efficiency of Makassar’s drainage system and urban land use plan. The study reveals that an uncoordinated drainage system in the Tamalanrea, Biringkanaya, and Manggala sub-districts results in severe flooding, encompassing a total area of 35.28 km2. The most affected land use type is cultivation land, constituting approximately 43.5% of the flooded area. Furthermore, 82.26% of the urban land use plan, covering 29.02 km2, is submerged. It is imperative for the local government and stakeholders to prioritize the enhancement of drainage systems and urban land use plans, particularly in low-lying and densely populated regions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. Residual Flood Damage under Intensive Adaptation;Tanoue;Nat. Clim. Change,2021

2. Rentschler, J., and Salhab, M. (2020). People in Harm’s Way: Flood Exposure and Poverty in 189 Countries, The World Bank. No. 9447.

3. BNPB (2023, July 07). Banjir Melanda Kota Makassar Sebanyak 1.869 Jiwa Mengungsi (Floods Hit Makassar City, As Many As 1,869 People Displaced). Available online: https://bnpb.go.id/berita/banjir-melanda-kota-makasar-sebanyak-1869-jiwa-mengungsi.

4. BPS-Statistics of Makassar Municipality (2023). Kota Makassar Dalam Angka 2023 (Makassar Municipality in Figure 2023), BPS-Statistics of Makassar Municipality. 73710.2302.

5. Land Use Change Study and the Increased Risk of Floods Disaster in Jeneberang Watershed at Gowa Regency, South Sulawesi, Indonesia;Widodo;IOP Conf. Ser. Earth Environ. Sci.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3