Defects Detection and Identification in Adhesively Bonded Joints between CFRP Laminate and Reinforced Concrete Beam Using Acousto-Ultrasonic Technique

Author:

Sarr Cheikh A. T.,Chataigner SylvainORCID,Gaillet Laurent,Godin NathalieORCID

Abstract

Adhesively bonded composite reinforcements have been increasingly used in civil engineering since the 1980s. They depend on the effective transfer of forces throughout the adhesive joint that may be affected by defects or damages. It is therefore necessary to provide methods to detect and/or identify these defects present in the bonded joints without affecting their future use. This should be carried out through nondestructive methods (NDT) and should be able to discriminate the different types of defects that may be encountered. The acousto-ultrasonic technique shows good potential to answer to this challenge, as illustrated in recent studies led on small-scale model samples. In this paper, we assess the robustness of this methodology on larger scale samples using reinforced concrete beams (RC beam), that is a mandatory step prior to on-site applications. A mono-parametric analysis allows the detection of all types of defects using a simple criterion set. For the identification, it was necessary to conduct a data-driven strategy by means of a Principal Component Analysis (PCA) and a random forest (RF) method used from extracted parameters.

Funder

Region Pays de la loire

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference39 articles.

1. Design and testing of an adhesively bonded CFRP strengthening system for steel structures

2. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material

3. Fibre-reinforced polymer repair material: Some facts

4. A review of defect types and nondestructive testing techniques for composites and bonded joints;Adams;NDT Int.,1988

5. Nondestructive testing of adhesively-bonded joints

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3