Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles

Author:

Kaidar Bayan,Smagulova GaukharORCID,Imash AigerimORCID,Mansurov Zulkhair

Abstract

The results of the synthesis of PAN/NiO composite fibers by the electrospinning method are presented. The electrospinning installation included a rotating drum collector for collecting fibers. Nickel oxide nanoparticles were synthesized by solution combustion synthesis from nickel nitrate and urea. It was shown that monophase NiO nanoparticles with average particle sizes of 154 nm could be synthesized by this method. NiO nanoparticles were investigated by X-ray diffraction analysis and scanning electron microscopy. Based on NiO nanoparticles, composite PAN/NiO fibers were obtained by electrospinning. The obtained composite fibers were modified with heat treatment (stabilization and carbonization) processes. Obtained C/NiO fibers were investigated by SEM, and EDAX. It was shown that obtained composite fibers could be used for the detection of acetone and acetylene in air. These results show that C/NiO based electrospun fibers have potential applications in gas sensors.

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3