Response and Regulatory Network Analysis of Roots and Stems to Abiotic Stress in Populus trichocarpa

Author:

Tao Ran,Liu Yaqiu,Jing Weipeng

Abstract

Abiotic stress is one of the environmental conditions that effects plant survival and growth. As a vital model plant and papermaking raw material, it is very important to identify the differentially expressed genes of Populus trichocarpa Torr. & A.Gray ex Hook under abiotic stress in order to cultivate stress-tolerant plants. We analyzed the whole transcription spectrum and potential differentially expressed genes of 54 groups of roots and stem-xylem sequencing sample data under cold, drought, heat and salt stress for different durations. Gene Ontology (GO) enrichment analysis showed that molecular function played a stronger role in stems’ response to abiotic stress, and genes in roots could barely respond to both cold stress and heat stress. Degree and betweenness centrality were used to identify transcription factors. It was considered that intermediate centrality is more suitable to determine whether the transcription factor is a hub gene. DNA binding was the biggest enrichment, while transcription factors responded to the abiotic stress. The multipronged approach identified in the roots and stems provides a genetic basis for resistance and more targeted genetic improvement of Populus trichocarpa. The comparison of two centralities can more effectively analyze the importance of complex gene network nodes in plants under corresponding abiotic stresses.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

Reference30 articles.

1. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks

2. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups;Larcher,2003

3. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene

4. Heat Stress Affects the Physiological and Biochemical Quality of Dalbergia nigra Seeds in vitro;Ingridh;For. Sci.,2021

5. The Comparison of Cold tolerance of Three Species of Evergreen Broad-leaved Woody Plants;Sifan;Agric. Biotechnol.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3