Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure

Author:

Matharaarachchi Amali1,Mendis Wishmitha1,Randunu Kanishka1,De Silva Daswin1ORCID,Gamage Gihan1,Moraliyage Harsha1ORCID,Mills Nishan1ORCID,Jennings Andrew1ORCID

Affiliation:

1. Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia

Abstract

Internet-of-Things (IoT) technologies have been steadily adopted and embedded into energy infrastructure following the rapid transformation of energy grids through distributed consumption, renewables generation, and battery storage. The data streams produced by such energy IoT infrastructure can be extracted, processed, analyzed, and synthesized for informed decision-making that delivers optimized grid operations, reduced costs, and net-zero carbon emissions. However, the voluminous nature of such data streams leads to an equally large number of analysis outcomes that have proven ineffective in decision-making by energy grid operators. This gap can be addressed by introducing artificial intelligence (AI) chatbots, or more formally conversational agents, to proactively assist human operators in analyzing and identifying decision opportunities in energy grids. In this research, we draw upon the recent success of generative AI for optimized AI chatbots with natural language understanding and generation capabilities for the complex information needs of energy IoT infrastructure and net-zero emissions. The proposed approach for optimized generative AI chatbots is composed of six core modules: Intent Classifier, Knowledge Extractor, Database Retriever, Cached Hierarchical Vector Storage, Secure Prompting, and Conversational Interface with Language Generator. We empirically evaluate the proposed approach and the optimized generative AI chatbot in the real-world setting of an energy IoT infrastructure deployed at a large, multi-campus tertiary education institution. The results of these experiments confirm the contribution of generative AI chatbots in simplifying the complexity of energy IoT infrastructure for optimized grid operations and net-zero carbon emissions.

Funder

Australian Government’s International Collaboration Networks Grant

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3