Ramping-Up Electro-Fuel Production

Author:

Peters Ralf123ORCID,Decker Maximilian14,Breuer Janos Lucian14,Samsun Remzi Can1,Stolten Detlef245

Affiliation:

1. Institute of Energy and Climate Research—Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany

2. JARA-ENERGY, 52056 Aachen, Germany

3. Faculty of Mechanical Engineering, Synthetic Fuels, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany

4. Chair for Fuel Cells, RWTH Aachen University, 52072 Aachen, Germany

5. Institute of Energy and Climate Research—Techno-Economic System Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany

Abstract

Future transport systems will rely on new electrified drives utilizing batteries and hydrogen-powered fuel cells or combustion engines with sustainable fuels. These systems must complement each other and should not be viewed as competing. Properties such as efficiency, range, as well as transport and storage properties will determine their use cases. This article looks at the usability of liquid electro-fuels in freight transport and analyzes the production capacities that will be necessary through 2050 in Germany. Different scenarios with varying market shares of electro-fuels are considered. A scenario with a focus on fuel cells foresees a quantity of 220 PJ of electro-fuels, i.e., 5.1 million tons, which reduces 80% of carbon dioxide emissions in LDV and HDV transport. A further scenario achieves carbon-neutrality and leads to a demand for nearly 17 million tons of e-fuel, corresponding to 640 PJ. Considering a final production rate of 5.1 million tons of electro-fuels per year leads to maximum investment costs of around EUR 350 million/year in 2036 during the ramp-up phase. The total investment costs for synthesis plants amount to EUR 4.02 billion. A carbon-neutrality scenario requires more than a factor 3 for investment for the production facilities of electro-fuels alone.

Publisher

MDPI AG

Reference85 articles.

1. (2024, February 29). Commission Welcomes Completion of Key ‘Fit for 55’ Legislation, Putting EU on Track to Exceed 2030 Targets. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_23_4754.

2. Peters, R., Breuer, J.L., Decker, M., Grube, T., Robinius, M., Samsun, R.C., and Stolten, D. (2021). Future Power Train Solutions for Long-Haul Trucks. Sustainability, 13.

3. Bründlinger, T., König, J.E., Gründig, D., Frank, O., Jugel, C., Kraft, P., Krieger, O., Mischinger, S., Prein, P., and Seidl, H. (2018). Leitstudie Integrierte Energiewende, Deutsche Energie-Agentur GmbH.

4. Decker, M. (2023). Strategieentwicklung zur Umsetzung der Klimaschutzziele im Verkehrssektor mit dem Fokus Kraftstoffe, RWTH University of Aachen.

5. Harrison, P. (2018). Fuelling Europe’s Future: How the Transition from Oil Strengthens the Economy, Cambridge Econometrics.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3