Monocular Camera Viewpoint-Invariant Vehicular Traffic Segmentation and Classification Utilizing Small Datasets

Author:

Yousef Amr,Flora Jeff,Iftekharuddin Khan

Abstract

The work presented here develops a computer vision framework that is view angle independent for vehicle segmentation and classification from roadway traffic systems installed by the Virginia Department of Transportation (VDOT). An automated technique for extracting a region of interest is discussed to speed up the processing. The VDOT traffic videos are analyzed for vehicle segmentation using an improved robust low-rank matrix decomposition technique. It presents a new and effective thresholding method that improves segmentation accuracy and simultaneously speeds up the segmentation processing. Size and shape physical descriptors from morphological properties and textural features from the Histogram of Oriented Gradients (HOG) are extracted from the segmented traffic. Furthermore, a multi-class support vector machine classifier is employed to categorize different traffic vehicle types, including passenger cars, passenger trucks, motorcycles, buses, and small and large utility trucks. It handles multiple vehicle detections through an iterative k-means clustering over-segmentation process. The proposed algorithm reduced the processed data by an average of 40%. Compared to recent techniques, it showed an average improvement of 15% in segmentation accuracy, and it is 55% faster than the compared segmentation techniques on average. Moreover, a comparative analysis of 23 different deep learning architectures is presented. The resulting algorithm outperformed the compared deep learning algorithms for the quality of vehicle classification accuracy. Furthermore, the timing analysis showed that it could operate in real-time scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object Detection in Traffic Videos: A Survey;IEEE Transactions on Intelligent Transportation Systems;2023-07

2. A Novel Survey on ML based Vehicle Detection for Dynamic Traffic Control;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3