CovidArray: A Microarray-Based Assay with High Sensitivity for the Detection of Sars-Cov-2 in Nasopharyngeal Swabs

Author:

Damin FrancescoORCID,Galbiati Silvia,Gagliardi StellaORCID,Cereda Cristina,Dragoni FrancescaORCID,Fenizia ClaudioORCID,Savasi ValeriaORCID,Sola LauraORCID,Chiari Marcella

Abstract

A new coronavirus (SARS-CoV-2) caused the current coronavirus disease (Covid-19) epidemic. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used as the gold standard for clinical detection of SARS-CoV-2. Under ideal conditions, RT-qPCR Covid-19 assays have analytical sensitivity and specificity greater than 95%. However, when the sample panel is enlarged including asymptomatic individuals, the sensitivity decreases and false negatives are reported. Moreover, RT-qPCR requires up to 3–6 h with most of the time involved in RNA extraction from swab samples. We introduce CovidArray, a microarray-based assay, to detect SARS-CoV-2 markers N1 and N2 in the nasopharyngeal swabs. The method is based on solid-phase hybridization of fluorescently-labeled amplicons upon RNA extraction and reverse transcription. This approach combines the physical-optical properties of the silicon substrate with the surface chemistry used to coat the substrate to obtain a diagnostic tool of great sensitivity. Furthermore, we used an innovative approach, RNAGEM, to extract and purify viral RNA in less than 15 min. We correctly assigned 12 nasopharyngeal swabs, previously analyzed by RT-qPCR. Thanks to the CovidArray sensitivity we were able to identify a false-negative sample. CovidArray is the first DNA microarray-based assay to detect viral genes in the swabs. Its high sensitivity and the innovative viral RNA extraction by RNAGEM allows the reduction of both the amount of false-negative results and the total analysis time to about 2 h.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2;Gorbalenya;Nat. Microbiol.,2020

3. Novel 2019 Coronavirus Genome. Virologicalhttp://virological.org/t/novel-2019-coronavirus-genome/319

4. Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Caseshttps://apps.who.int/iris/handle/10665/330676

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3