Spatiotemporal Dynamic Multi-Hop Network for Traffic Flow Forecasting

Author:

Chai Wenguang1,Luo Qingfeng1ORCID,Lin Zhizhe2ORCID,Yan Jingwen3,Zhou Jinglin4ORCID,Zhou Teng25ORCID

Affiliation:

1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

2. School of Cyberspace Security, Hainan University, Haikou 570228, China

3. College of Engineering, Shantou University, Shantou 515063, China

4. School of Philosophy, Fudan University, Shanghai 200433, China

5. Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou 324003, China

Abstract

Accurate traffic flow forecasting is vital for intelligent transportation systems, especially with urbanization worsening traffic congestion, which affects daily life, economic growth, and the environment. Precise forecasts aid in managing and optimizing transportation systems, reducing congestion, and improving air quality by cutting emissions. However, predicting outcomes is difficult due to intricate spatial relationships, nonlinear temporal patterns, and the challenges associated with long-term forecasting. Current research often uses static graph structures, overlooking dynamic and long-range dependencies. To tackle these issues, we introduce the spatiotemporal dynamic multi-hop network (ST-DMN), a Seq2Seq framework. This model incorporates spatiotemporal convolutional blocks (ST-Blocks) with residual connections in the encoder to condense historical traffic data into a fixed-dimensional vector. A dynamic graph represents time-varying inter-segment relationships, and multi-hop operation in the encoder’s spatial convolutional layer and the decoder’s diffusion multi-hop graph convolutional gated recurrent units (DMGCGRUs) capture long-range dependencies. Experiments on two real-world datasets METR-LA and PEMS-BAY show that ST-DMN surpasses existing models in three metrics.

Funder

Guangdong Provincial University Innovation Team Project

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3