A Fast Neighbor Discovery Algorithm in WSNs

Author:

Wei Liangxiong,Sun Weijie,Chen Haixiang,Yuan Ping,Yin Feng,Luo Qian,Chen Yanru,Chen Liangyin

Abstract

With the quick development of Internet of Things (IoT), one of its important supporting technologies, i.e., wireless sensor networks (WSNs), gets much more attention. Neighbor discovery is an indispensable procedure in WSNs. The existing deterministic neighbor discovery algorithms in WSNs ensure that successful discovery can be obtained within a given period of time, but the average discovery delay is long. It is difficult to meet the need for rapid discovery in mobile low duty cycle environments. In addition, with the rapid development of IoT, the node densities of many WSNs greatly increase. In such scenarios, existing neighbor discovery methods fail to satisfy the requirement in terms of discovery latency under the condition of the same energy consumption. This paper proposes a group-based fast neighbor discovery algorithm (GBFA) to address the issues. By carrying neighbor information in beacon packet, the node knows in advance some potential neighbors. It selects more energy efficient potential neighbors and proactively makes nodes wake up to verify whether these potential neighbors are true neighbors, thereby speeding up neighbor discovery, improving energy utilization efficiency and decreasing network communication load. The evaluation results indicate that, compared with other methods, GBFA decreases the average discovery latency up to 10 . 58 % at the same energy budget.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coverage Hole Aware Data Routing for Mobile Sink Wireless Sensor Networks;2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC);2024-05-24

2. RECO: On-Demand Recharging and Data Collection for Wireless Rechargeable Sensor Networks;IEEE Transactions on Green Communications and Networking;2023-12

3. TBDD: Territory-Bound Data Delivery for Large-Scale Mobile Sink Wireless Sensor Networks;IEEE Internet of Things Journal;2023-11-15

4. A Hybrid Approach to Neighbour Discovery in Wireless Sensor Networks;Intelligent Automation & Soft Computing;2023

5. A Fast Response Neighbor Discovery Algorithm in Low-Duty-Cycle Mobile Sensor Networks;Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3