Causalized Convergent Cross Mapping and Its Implementation in Causality Analysis

Author:

Sun Boxin1ORCID,Deng Jinxian1ORCID,Scheel Norman2ORCID,Zhu David C.3ORCID,Ren Jian1ORCID,Zhang Rong45ORCID,Li Tongtong16ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

2. Department of Radiology, Michigan State University, East Lansing, MI 48824, USA

3. Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

4. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA

5. Department of Neurology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

6. Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48109, USA

Abstract

Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically, we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling in various settings through a large number of examples, including Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction on the performance of cCCM and provide detailed guidelines on how to configure the key parameters of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and easy-to-implement tool for causality analysis in a wide spectrum of applications.

Funder

National Science Foundation

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3