Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach

Author:

Xia Cuihui,Yao Tandong,Wang WeicaiORCID,Hu Wentao

Abstract

Quantifying the climatic effect on residential electricity consumption (REC) can provide valuable insights for improving climate–energy damage functions. Our study quantifies the effect of climate on the REC in Tibet using machine learning algorithm models and model-agnostic interpretation tools of feature importance scores and partial dependence plots. Results show that the climate contributes about 16.46% to total Tibet REC while socioeconomic factors contribute about 83.55%. Precipitation (particularly snowfall) boosts electricity consumption during the cold season. The effect of the climate is stronger in urban Tibet (~25.06%) than rural Tibet (~14.79%), particularly in September when electricity-aided heating is considered optional, as higher incomes amplified the REC response to the climate. With urbanization and income growth, the climate is expected to contribute more to Tibet REC. Hence, precipitation should be incorporated in climate–REC functions for the social cost of carbon (SCC) estimation, particularly for regions vulnerable to snowfall and blizzards. Herein, we developed a model-agnostic method that can quantify the total effect of the climate while differentiating between contributions from temperature and precipitation, which can be used to facilitate interdisciplinary and cross-section analysis in earth system science. Moreover, this data-driven model can be adapted to warn against extreme weather induced power outages.

Funder

Ministry of Science and Technology

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference66 articles.

1. Contribution of Working Group I to the Sixth Assessment Report,2021

2. Revisiting the social cost of carbon

3. The Social Cost of Carbon, Risk, Distribution, Market Failures: An Alternative Approach;Stern,2021

4. Keep climate policy focused on the social cost of carbon

5. The emergence and evolution of Earth System Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3