Artificial Neural Network-Based Caprock Structural Reliability Analysis for CO2 Injection Site—An Example from Northern North Sea

Author:

Ahmadi Goltapeh SajjadORCID,Rahman Md JamilurORCID,Mondol Nazmul HaqueORCID,Hellevang Helge

Abstract

In CO2 sequestration projects, assessing caprock structural stability is crucial to assure the success and reliability of the CO2 injection. However, since caprock experimental data are sparse, we applied a Monte Carlo (MC) algorithm to generate stochastic data from the given mean and standard deviation values. The generated data sets were introduced to a neural network (NN), including four hidden layers for classification purposes. The model was then used to evaluate organic-rich Draupne caprock shale failure in the Alpha structure, northern North Sea. The train and test were carried out with 75% and 25% of the input data, respectively. Following that, validation is accomplished with unseen data, yielding promising classification scores. The results show that introducing larger input data sizes to the established NN provides better convergence conditions and higher classification scores. Although the NN can predicts the failure states with a classification score of 97%, the structural reliability was significantly low compare to the failure results estimated using other method. Moreover, this indicated that during evaluating the field-scale caprock failure, more experimental data is needed for a reliable result. However, this study depicts the advantage of machine learning algorithms in geological CO2 storage projects compared with similar finite elements methods in the aspect of short fitting time, high accuracy, and flexibility in processing different input data sizes with different scales.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Machine learning to discover mineral trapping signatures due to CO2 injection

2. Global warming of 1.5 C;Masson-Delmotte;IPCC Spec. Rep. Impacts Glob. Warm.,2018

3. Carbon Dioxide Capture and Storage,2005

4. CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3