Electromagnetic and Thermal Analysis of 225 kW High-Speed PMSM for Centrifugal Blower Applications

Author:

Abubakar UsmanORCID,Wang Xiaoyuan,Shah Sayyed HaleemORCID,Wang Lixin,Farouk Aminu

Abstract

In order to make centrifugal blowers environmentally friendly, machines with a lighter weight and a more compact size are required. Thus, the axial length of the machine needs to be minimized within the diameter limit. However, in the design methodology, losses and thermal study become very significant; thus, losses increase significantly to achieve the desired output power when the volume is excessively reduced. Moreover, due to the machine’s compact size, heat is concentrated rapidly without adequate cooling. It might lead to a temperature rise of the critical part of the machine above the safe limit, such as winding, thereby affecting its lifespan. This study considers the 225 kW high-speed permanent magnet synchronous machine (HSPMSM) with the forced air cooling axial ventilation system (FACAVS) used in centrifugal blower applications. Firstly, four different analytical models (A2–A5) in the electromagnetic analysis are derived by minimizing the initial machine’s (A1) axial length to achieve a lighter weight and more compact size with better electromagnetic performance. The best among analytical models is chosen as the A4 model with a lighter weight and a more compact structure in addition to higher torque density than A1, A2, and A3 models, and higher efficiency than A1, A2, A3, and A5 models by HSPMSM’s, optimal geometric design, and optimal material choice, respectively. Secondly, LPTN is designed to predict the entire analytical model’s thermal behavior in the thermal analysis. Investigation shows that winding temperature rises from the A4 model is maintained below winding insulation by the determined optimal axial ventilation parameters from the sensitivity analysis. Finally, different analytical models are prototyped and tested. The comparisons between predicted electromagnetic performance, winding temperature rise, and test results were carried out, and the results were found to agree with each other consistently.

Funder

Hebei Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3