Pyrolysis Characteristics of Hailar Lignite in the Presence of Polyvinyl Chloride: Products Distribution and Chlorine Migration

Author:

Fan Hui,Ren Menglin,Feng Caiyun,Jiao Yue,Bai Yonghui,Ma Qingxiang

Abstract

This study investigated the effects of polyvinyl chloride (PVC) addition on low-rank coal’s pyrolysis characteristics, especially the products distribution and chlorine migration. Hailar lignite (HLE) with different industrial, pure, PVC-content additions were prepared (the mass percentage of PVC addition was from 5% to 25%), and the co-pyrolysis characteristics of HLE and PVC were performed on a fixed-bed reactor and thermogravimetric analyzer. The chars were characterized with X-ray diffraction (XRD), X-ray fluorescence (XRF), and Fourier-transform infrared (FT-IR) spectroscopy analysis. The gas and tar compositions were analyzed by using gas chromatography (GC) and a gas chromatography–mass spectrometry (GC–MS) system, respectively. The results indicate that the addition of PVC can increase the release amounts of CH4, C2H4, and C2H6, simultaneously reducing the release amount of CO2 and CO; the quality of pyrolysis tar was also improved, especially the alkane content in tar, which increased by 6.9%. The migration of chlorine in PVC was analyzed with the different PVC additions and terminal pyrolysis temperatures. It showed that the content of chlorine in the gas phase first increased with the increasing pyrolysis temperature, but at the terminal temperature of 600 °C, the chlorine in the gas phase began to decrease. The results of the co-pyrolysis char characterization show that the content of the alkali metal oxide gradually decreases in the char, and metal chloride appears during the pyrolysis process. In the co-pyrolysis reaction of coal and PVC, chlorine was fixed in the char, thereby reducing the distribution of chlorine in the gas phase. This also proves that the PVC pyrolysis process, with the participation of low-rank coal, can enrich chlorine into the solid phase, thus reducing the emission of chlorine in the gas phase.

Funder

Natural Science Foundation of Ningxia

National Natural Science Foundation of China

Jiangsu Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3