Low and Ultra-Low Temperature District Heating Equipped by Heat Pumps—An Analysis of the Best Operative Conditions for a Swiss Case Study

Author:

Toffanin Riccardo,Caputo PaolaORCID,Belliardi MarcoORCID,Curti Vinicio

Abstract

The manuscript analyses the management of low and ultra-low-temperature district heating systems (DHS) coupled with centralised and decentralised heat pumps. Operative conditions are defined in order to satisfy the heating needs without overloading the electric grid. The results are achieved by dynamic simulations, based on a real DHS located in southern Switzerland. At the building level, the heating needs are estimated considering real data and simultaneous energy simulations. Two DHS configurations, alternatives to the existing one, are simulated and suitable parameters for the management of the DHS are selected. The global performance of the two DHS is evaluated by KPIs also including the flexibility and the impact on the electric peak due to heat pumps. The achieved results are discussed providing suggestions for the stakeholders involved in DHS management for an optimal matching of the electric grid and thermal networks towards a reduction of the peak power. The rule-based control strategies defined allow the expected electric peak shaving and load levelling, conversely, the yearly energy consumptions are lightly increased and have to be further investigated. The outcomes demonstrate a global better performance of the ultra-low temperature DHS in terms of response to the applied control strategies and of energy savings.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3