Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China

Author:

Chen Yang,Zhang JifeiORCID

Abstract

Improvement of soil nutrients is crucial for the long-term development and stability of restored ecosystems in mine areas. However, knowledge about the variation in soil nutrients and their influencing factors during the reclamation of sub-alpine metal mine soil is still scarce. We assess the status of soil organic carbon (SOC), total nitrogen (TN), N fractions, total phosphorus (TP), and available P in reclaimed soil at a copper mine site (2702 m above sea level) in the southeastern edge of the Tibetan Plateau, southwest China. The mine area had been reclaimed by distributing stockpiled topsoil (~15 cm) in 2008, sowing seeds of ryegrass (Lolium perenne L.) in 2009, and planting seedlings of A. ferdinandi-coburgii and Rosa omeiensis f. pteracantha in 2010. We found that, eight years after the reclamation, although the concentrations of SOC (24.3 g kg−1) and TN (2.21 g kg−1) in the reclaimed soil increased by 25% and 29% compared with the stockpiled topsoil, respectively, they only accounted for about half of the levels in the undisturbed topsoil. In contrast, the concentration of TP (498–570 mg kg−1) did not significantly change between the reclaimed and stockpiled topsoil. The concentrations of NH4-N (30.1 g kg−1), NO3-N (17.2 g kg−1), and available P (11.1 mg kg−1) in the reclaimed soil were 2.2, 1.3, and 1.6 times the levels in stockpiled topsoil, respectively, but still lower than those in undisturbed soil. The concentrations of microbial C, N, and P in the reclaimed soil had a similar variation pattern to the available nutrients. The soil C:P and N:P ratios and microbial biomass C:P and N:P ratios in the reclaimed soil were significantly lower than the levels in the undisturbed forest soil. The average accumulation rates of SOC and TN in the reclaimed soil were 85.3 and 11.4 g m−2 year−1, respectively. The rates are much lower than those of reclaimed mine soils with similar reclaim duration but better climate conditions. Relatively slow development of vegetation and soil microorganisms and leaching due to a freeze–thaw cycle controlled by the sub-alpine climate are likely responsible for the slow recovery of soil SOC and TN.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3