Photoluminescence of Chemically and Electrically Doped Two-Dimensional Monolayer Semiconductors

Author:

Kim Hyungjin1,Adinolfi Valerio2,Lee Sin-Hyung3

Affiliation:

1. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

3. Department of Intelligent Semiconductor Engineering, School of Advanced Fusion Studies, University of Seoul, Seoul 02504, Republic of Korea

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers exhibit unique physical properties, such as self-terminating surfaces, a direct bandgap, and near-unity photoluminescence (PL) quantum yield (QY), which make them attractive for electronic and optoelectronic applications. Surface charge transfer has been widely used as a technique to control the concentration of free charge in 2D semiconductors, but its estimation and the impact on the optoelectronic properties of the material remain a challenge. In this work, we investigate the optical properties of a WS2 monolayer under three different doping approaches: benzyl viologen (BV), potassium (K), and electrostatic doping. Owing to the excitonic nature of 2D TMDC monolayers, the PL of the doped WS2 monolayer exhibits redshift and a decrease in intensity, which is evidenced by the increase in trion population. The electron concentrations of 3.79×1013 cm−2, 6.21×1013 cm−2, and 3.12×1012 cm−2 were measured for WS2 monolayers doped with BV, K, and electrostatic doping, respectively. PL offers a direct and versatile approach to probe the doping effect, allowing for the measurement of carrier concentration in 2D monolayer semiconductors.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3