Affiliation:
1. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
3. Department of Intelligent Semiconductor Engineering, School of Advanced Fusion Studies, University of Seoul, Seoul 02504, Republic of Korea
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers exhibit unique physical properties, such as self-terminating surfaces, a direct bandgap, and near-unity photoluminescence (PL) quantum yield (QY), which make them attractive for electronic and optoelectronic applications. Surface charge transfer has been widely used as a technique to control the concentration of free charge in 2D semiconductors, but its estimation and the impact on the optoelectronic properties of the material remain a challenge. In this work, we investigate the optical properties of a WS2 monolayer under three different doping approaches: benzyl viologen (BV), potassium (K), and electrostatic doping. Owing to the excitonic nature of 2D TMDC monolayers, the PL of the doped WS2 monolayer exhibits redshift and a decrease in intensity, which is evidenced by the increase in trion population. The electron concentrations of 3.79×1013 cm−2, 6.21×1013 cm−2, and 3.12×1012 cm−2 were measured for WS2 monolayers doped with BV, K, and electrostatic doping, respectively. PL offers a direct and versatile approach to probe the doping effect, allowing for the measurement of carrier concentration in 2D monolayer semiconductors.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korean government
National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT