Microstructure and Mechanical Properties of As-Cast Al-10Ce-3Mg-xZn Alloys

Author:

Zhang Haiyang1,Wu Mingdong1ORCID,Li Zeyu1,Xiao Daihong1ORCID,Huang Yang1,Huang Lanping1,Liu Wensheng1

Affiliation:

1. National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China

Abstract

The microstructure and mechanical properties of as-cast Al-10Ce-3Mg-xZn (x = 0, 1, 3, 5 wt.%) alloys were systematically investigated, with a focus on the effect of Zn on the Al11Ce3 reinforcing phase in the alloy. The results showed that the Al-10Ce-3Mg alloy consists of α-Al, a Chinese-script Al11Ce3 eutectic phase, and a massive Al11Ce3 primary phase. With the addition of Zn content, most of the Zn atoms are enriched in the Al11Ce3 phase to form the acicular-like Al2CeZn2 phase within the Al11Ce3 phase. Increasing the Zn content can increase the volume fraction of the Al11Ce3 phase. Compared to the alloy without Zn addition, the microhardness and elastic modulus of the Al2CeZn2-reinforced Al11Ce3 phase in the alloy with 5 wt.% Zn increased by 18.9% and 9.0%, respectively. Moreover, the room-temperature mechanical properties of Al-10Ce-3Mg alloys were significantly improved due to the addition of Zn element. The alloy containing 5 wt.% Zn had the best tensile properties with an ultimate tensile strength of 210 MPa and a yield strength of 171MPa, which were 21% and 77% higher than those of the alloy without Zn, respectively. The alloy containing 5 wt.% Zn demonstrated a superior retention ratio of tensile strength at 200–300 °C, indicating that the alloy has excellent heat resistance. The improvement in the mechanical properties is primarily attributed to second-phase strengthening and solid solution strengthening.

Funder

Pre-research Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3