Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation

Author:

Liu Ping-Ping12ORCID,Wang Qi-Cong1,Jia Yu-Mei2,Han Wen-Tuo12,Yi Xiao-Ou12,Zhan Qian12ORCID,Wan Fa-Rong12

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. USTB-BJHB Joint Laboratory of Beryllium and Advanced Materials for Fusion Energy, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Beryllium (Be) has been selected as the solid neutron multiplier material for a tritium breeding blanket module in ITER, which is also the primary option of the Chinese TBM program. But the irradiation swelling of beryllium is severe under high temperature, high irradiation damage and high doses of transmutation-induced helium. Advanced neutron multipliers with high stability at high temperature are desired for the demonstration power plant (DEMO) reactors and the China Fusion Engineering Test Reactor (CFETR). Beryllium alloys mainly composed of Be12M (M is W or Ti) phase were fabricated by HIP, which has a high melting point and high beryllium content. Beryllium and beryllide (Be12Ti and Be12W) samples were irradiated by helium ion with 30 keV and 1 × 1018 cm−2 at RT. The microstructures of Be, Be12Ti and Be12W samples were analyzed by SEM and TEM before and after ion irradiation. The average size of the first blistering on the surface of Be-W alloy is about 0.8 μm, and that of secondary blistering is about 79 nm. The surface blistering rates of the beryllium and beryllide samples were also compared. These results may provide a preliminary experimental basis for evaluating the irradiation swelling resistance of beryllium alloy.

Funder

the National Natural Science Foundation of China

National MCF Energy R & D Program

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3