Non-Debye Behavior of the Néel and Brown Relaxation in Interacting Magnetic Nanoparticle Ensembles

Author:

Botez Cristian E.1,Knoop Jeffrey1

Affiliation:

1. Department of Physics and Astronomy, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA

Abstract

We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of the carrier fluid (TF = 197 K): χ″ shows peaks at temperatures Tp1 and Tp2 around 75 K and 225 K, respectively. Below TF, the Néel mechanism is entirely responsible for the superspin relaxation (as the carrier fluid is frozen), and we found that the temperature dependence of the relaxation time, τN(Tp1), is well described by the Dorman–Bessais–Fiorani (DBF) model: τNT=τrexp⁡EB+EadkB T. Above TF, both the internal (Néel) and the Brownian superspin relaxation mechanisms are active. Yet, we found evidence that the effective relaxation times, τeff, corresponding to the Tp2 peaks observed in the denser samples do not follow the typical Debye behavior described by the Rosensweig formula 1τeff=1τN+1τB. First, τeff is 5 × 10−5 s at 225 K, almost three orders of magnitude more that its Néel counterpart, τN~8 × 10−8 s, estimated by extrapolating the above-mentioned DBF analysis. Thus, 1τN≫1τeff, which is clearly not consistent with the Rosensweig formula. Second, the observed temperature dependence of the effective relaxation time, τeff(Tp2), is excellently described by τB−1T=Tγ0exp⁡−E′kBT−T0′, a model solely based on the hydrodynamic Brown relaxation, τB(T)=3ηTVHkBT, combined with an activation law for the temperature variation of the viscosity, ηT=η0exp⁡E′/kB(T−T0′. The best fit yields γ0=3ηVHkB = 1.6 × 10−5 s·K, E′/kB = 312 K, and T0′ = 178 K. Finally, the higher temperature Tp2 peaks vanish in the more diluted samples (δ ≤ 0.02). This indicates that the formation of larger hydrodynamic particles via aggregation, which is responsible for the observed Brownian relaxation in dense samples, is inhibited by dilution. Our findings, corroborating previous results from Monte Carlo calculations, are important because they might lead to new strategies to synthesize functional magnetic ferrofluids for biomedical applications.

Funder

U.S. Department of Defense Army Research Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3