Assessing the Effect of Changing Ambient Air Temperature on Water Temperature and Quality in Drinking Water Distribution Systems

Author:

Lai Yuchuan,Dzombak David A.ORCID

Abstract

Drinking water distribution systems (DWDS) are affected by climate change and this work aimed to assess the effect of changing ambient air temperature on the water temperature and various water quality parameters in DWDS. A water temperature estimation model was identified and evaluated at seven specific locations in the U.S. and water quality parameters were assessed with a case study for Washington D.C. Preliminary estimation of changes in water temperature and two temperature-related parameters (the chlorine decay rate and bacterial activity) were developed for 91 U.S. cities using local air temperature observations and projections. Estimated water temperature changes in DWDS are generally equivalent to air temperature changes on an annual average basis, suggesting modest changes for the assessed historical periods and possibly more intensified changes in the future with greater increase in air temperature. As higher water age can amplify the temperature effect and the effects of temperature on some water quality parameters can be inter-related, yielding an aggregated effect, evaluation of extreme cases for DWDS will be of importance. In responding to changing climate conditions, assessments of DWDS water temperature changes and resulting impacts on water quality merit more attention to ensure appropriate adaptation of DWDS design and management.

Funder

Carnegie Mellon University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference81 articles.

1. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II,2018

2. Climate Science Special Report: Fourth National Climate Assessment, Volume I,2017

3. Adapting Infrastructure and Civil Engineering Practice to a Changing Climate,2015

4. Estimated effects of climate change on flood vulnerability of U.S. bridges

5. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3