The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant

Author:

Cui Lijuan,Liu Yinghui,Yang Yiwen,Ye Shuifeng,Luo Hongyi,Qiu Baosheng,Gao XiangORCID

Abstract

Environmental abiotic stresses are limiting factors for less tolerant organisms, including soil plants. Abiotic stress tolerance-associated genes from prokaryotic organisms are supposed to have a bright prospect for transgenic application. The drought-adapted cyanobacterium Nostoc flagelliforme is arising as a valuable prokaryotic biotic resource for gene excavation. In this study, we evaluated the salt-tolerant function and application potential of a candidate gene drnf1 from N. flagelliforme, which contains a P-loop NTPase (nucleoside-triphosphatase) domain, through heterologous expression in two model organisms Synechocystis sp. PCC 6803 and Arabidopsis thaliana. It was found that DRNF1 could confer significant salt tolerance in both transgenic organisms. In salt-stressed transgenic Synechocystis, DRNF1 could enhance the respiration rate; slow-down the accumulation of exopolysaccharides; up-regulate the expression of salt tolerance-related genes at a higher level, such as those related to glucosylglycerol synthesis, Na+/H+ antiport, and sugar metabolism; and maintain a better K+/Na+ homeostasis, as compared to the wild-type strain. These results imply that DRNF1 could facilitate salt tolerance by affecting the respiration metabolism and indirectly regulating the expression of important salt-tolerant genes. Arabidopsis was employed to evaluate the salt tolerance-conferring potential of DRNF1 in plants. The results show that it could enhance the seed germination and shoot growth of transgenic plants under saline conditions. In general, a novel prokaryotic salt-tolerant gene from N. flagelliforme was identified and characterized in this study, enriching the candidate gene pool for genetic engineering in plants.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3