Phosphoproteomics Reveals Selective Regulation of Signaling Pathways by Lysophosphatidic Acid Species in Macrophages

Author:

Dietze Raimund1,Szymanski Witold23ORCID,Ojasalu Kaire1,Finkernagel Florian14ORCID,Nist Andrea5,Stiewe Thorsten5ORCID,Graumann Johannes23ORCID,Müller Rolf1ORCID

Affiliation:

1. Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, 35043 Marburg, Germany

2. Institute of Translational Proteomics, Biochemical Pharmacological Centre, Philipps University, 35043 Marburg, Germany

3. Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany

4. Bioinformatics Core Facility, Philipps University, 35043 Marburg, Germany

5. Genomics Core Facility, Philipps University, 35043 Marburg, Germany

Abstract

Lysophosphatidic acid (LPA) species, prevalent in the tumor microenvironment (TME), adversely impact various cancers. In ovarian cancer, the 18:0 and 20:4 LPA species are selectively associated with shorter relapse-free survival, indicating distinct effects on cellular signaling networks. Macrophages represent a cell type of high relevance in the TME, but the impact of LPA on these cells remains obscure. Here, we uncovered distinct LPA-species-specific responses in human monocyte-derived macrophages through unbiased phosphoproteomics, with 87 and 161 phosphosites upregulated by 20:4 and 18:0 LPA, respectively, and only 24 shared sites. Specificity was even more pronounced for downregulated phosphosites (163 versus 5 sites). Considering the high levels 20:4 LPA in the TME and its selective association with poor survival, this finding may hold significant implications. Pathway analysis pinpointed RHO/RAC1 GTPase signaling as the predominantly impacted target, including AHRGEF and DOCK guanine exchange factors, ARHGAP GTPase activating proteins, and regulatory protein kinases. Consistent with these findings, exposure to 20:4 resulted in strong alterations to the actin filament network and a consequent enhancement of macrophage migration. Moreover, 20:4 LPA induced p38 phosphorylation, a response not mirrored by 18:0 LPA, whereas the pattern for AKT was reversed. Furthermore, RNA profiling identified genes involved in cholesterol/lipid metabolism as selective targets of 20:4 LPA. These findings imply that the two LPA species cooperatively regulate different pathways to support functions essential for pro-tumorigenic macrophages within the TME. These include cellular survival via AKT activation and migration through RHO/RAC1 and p38 signaling.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3