Unexpected Expression and Function of FcεRI in Immortalized Breast Cancer Cells: A Cautionary Null Study

Author:

Ashbaugh Alexandria M.1,Lyons David O.2,Keyser Carianna M.2,Pullen Nicholas A.2ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA

2. Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA

Abstract

The high-affinity IgE receptor, FcεRI, is typically associated with type 2 effectors such as mast cells (MC). The relatively unique expression profile of FcεRI and accumulating evidence from pre-clinical and clinical settings, such as MC interactions with tumors, have led us to study MCs as a potential therapeutic target in breast cancer. Our work identified MCs interacting with tumor cells at primary sites using the 4T1 (BALB/c) adenocarcinoma model in vivo. However, this analysis was complicated by a surprising finding that the tumor cells intrinsically and strongly expressed FcεRI. We further studied the expression and function of FcεRI in breast cancer cells in vitro. The 4T1 cells expressed FcεRI to a level similar to mouse bone marrow-derived MC (BMMC). Additionally, two established breast cancer cultures derived from human T-47D cells, one estrogen-dependent (E3) and the other estrogen-withdrawn (EWD8), also expressed FcεRI with EWD8 cells showing the greatest abundance. Functional analyses indicated that IgE-mediated antigen stimulation did not elicit classic Ca2+ flux in breast cancer cells as seen in the respective species’ MCs; however, FcεRI crosslinking could stimulate IL-6 production from the T-47D derivatives. Preliminary analysis of primary breast cancer biopsy datasets using R2: Genomics Analysis and Visualization Platform was discordant with our in vivo model and in vitro observations. Indeed, FcεRI mRNA abundance declined in metastatic breast cancers compared to non-cancerous breast tissue. Altogether, we report a previously unidentified and immunologically substantive difference between breast cancer models and human primary tumors. Investigators pursuing FcεRI-relevant therapeutics in this context should be aware of this translational barrier.

Publisher

MDPI AG

Reference33 articles.

1. (2021). How Common Is Breast Cancer? Breast Cancer Statistics, American Cancer Society. Available online: https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html.

2. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer;J. Immunol. Res.,2018

3. Rasé, V.J., Hayward, R., Haughian, J.M., and Pullen, N.A. (2022). Th17, Th22, and Myeloid-Derived Suppressor Cell Population Dynamics and Response to IL-6 in 4T1 Mammary Carcinoma. Int. J. Mol. Sci., 23.

4. Lyons, D.O., Plewes, M.R., and Pullen, N.A. (2018). Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro. PLoS ONE, 13.

5. SnapShot: Cancer immunoediting;Varanasi;Cell,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3