Enhanced Performance of the Optimized Dye CF583R in Direct Stochastic Optical Reconstruction Microscopy of Active Zones in Drosophila Melanogaster

Author:

Noß Marvin1,Ljaschenko Dmitrij1ORCID,Mrestani Achmed12ORCID

Affiliation:

1. Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, D-04103 Leipzig, Germany

2. Department of Neurology, Leipzig University Medical Center, D-04103 Leipzig, Germany

Abstract

Super-resolution single-molecule localization microscopy (SMLM) of presynaptic active zones (AZs) and postsynaptic densities contributed to the observation of protein nanoclusters that are involved in defining functional characteristics and in plasticity of synaptic connections. Among SMLM techniques, direct stochastic optical reconstruction microscopy (dSTORM) depends on organic fluorophores that exert high brightness and reliable photoswitching. While multicolor imaging is highly desirable, the requirements necessary for high-quality dSTORM make it challenging to identify combinations of equally performing, spectrally separated dyes. Red-excited carbocyanine dyes, e.g., Alexa Fluor 647 (AF647) or Cy5, are currently regarded as “gold standard” fluorophores for dSTORM imaging. However, a recent study introduced a set of chemically modified rhodamine dyes, including CF583R, that promise to display similar performance in dSTORM. In this study, we defined CF583R’s performance compared to AF647 and CF568 based on a nanoscopic analysis of Bruchpilot (Brp), a nanotopologically well-characterized scaffold protein at Drosophila melanogaster AZs. We demonstrate equal suitability of AF647, CF568 and CF583R for basal AZ morphometry, while in Brp subcluster analysis CF583R outperforms CF568 and is on par with AF647. Thus, the AF647/CF583R combination will be useful in future dSTORM-based analyses of AZs and other subcellularly located marker molecules and their role in physiological and pathophysiological contexts.

Funder

University of Leipzig Clinician Scientist Program

Jung Foundation for Science and Research

Open Access Publishing Fund of Leipzig University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3