Deregulation of Metalloproteinase Expression in Gray Horse Melanoma Ex Vivo and In Vitro

Author:

Brodesser Daniela M.1,Kummer Stefan2ORCID,Eichberger Julia A.1,Schlangen Karin3,Corteggio Annunziata4,Borzacchiello Giuseppe5,Bertram Christof A.6ORCID,Brandt Sabine1ORCID,Pratscher Barbara7ORCID

Affiliation:

1. Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria

2. VetImaging, VetCore Facility, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria

3. Section for Biosimulation and Bioinformatics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna (MUV), Waehringer Guertel 18-20, 1090 Vienna, Austria

4. Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy

5. Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy

6. Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria

7. Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria

Abstract

The ability of human melanoma cells to switch from an epithelial to a mesenchymal phenotype contributes to the metastatic potential of disease. Metalloproteinases (MPs) are crucially involved in this process by promoting the detachment of tumor cells from the primary lesion and their migration to the vasculature. In gray horse melanoma, epithelial–mesenchymal transition (EMT) is poorly understood, prompting us to address MP expression in lesions versus intact skin by transcriptome analyses and the immunofluorescence staining (IF) of gray horse tumor tissue and primary melanoma cells. RNAseq revealed the deregulation of several MPs in gray horse melanoma and, notably, a 125-fold upregulation of matrix metalloproteinase 1 (MMP1) that was further confirmed by RT-qPCR from additional tumor material. The IF staining of melanoma tissue versus intact skin for MMP1 and tumor marker S100 revealed MMP1 expression in all lesions. The co-expression of S100 was observed at different extents, with some tumors scoring S100-negative. The IF staining of primary tumor cells explanted from the tumors for MMP1 showed that the metalloproteinase is uniformly expressed in the cytoplasm of 100% of tumor cells. Overall, the presented data point to MP expression being deregulated in gray horse melanoma, and suggest that MMP1 has an active role in gray horse melanoma by driving EMT-mediated tumor cell dissemination via the degradation of the extracellular matrix. Whilst S100 is considered a reliable tumor marker in human MM, gray horse melanomas do not seem to regularly express this protein.

Funder

University of Veterinary Medicine Vienna

The Spanish Riding School, Vienna, Austria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3