Innovative Tools for DNA Topology Probing in Human Cells Reveal a Build-Up of Positive Supercoils Following Replication Stress at Telomeres and at the FRA3B Fragile Site

Author:

Ghilain Claire1,Vidal-Cruchez Olivia2ORCID,Joly Aurélia3ORCID,Debatisse Michelle4,Gilson Eric1567,Giraud-Panis Marie-Josèphe1

Affiliation:

1. CNRS UMR7284/INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, University Côte d’Azur, 06107 Nice, France

2. Simpson Querrey Institute, 303 E Superior, Chicago, IL 60611, USA

3. Medical Microbiology and Immunology Department, Faculty of Medicine & Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada

4. Gustave Roussy Institute, Sorbonne Université, UPMC, 94805 Villejuif, France

5. Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China

6. International Research Project in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Ruijin Hospital, Shanghai Jiao Tong University School, Shanghai 200025, China

7. Department of Genetics, CHU, FHU OncoAge, 06000 Nice, France

Abstract

Linear unconstrained DNA cannot harbor supercoils since these supercoils can diffuse and be eliminated by free rotation of the DNA strands at the end of the molecule. Mammalian telomeres, despite constituting the ends of linear chromosomes, can hold supercoils and be subjected to topological stress. While negative supercoiling was previously observed, thus proving the existence of telomeric topological constraints, positive supercoils were never probed due to the lack of an appropriate tool. Indeed, the few tools available currently could only investigate unwound (Trioxsalen) or overwound (GapR) DNA topology (variations in twist) but not the variations in writhe (supercoils and plectonemes). To address this question, we have designed innovative tools aimed at analyzing both positive and negative DNA writhe in cells. Using them, we could observe the build-up of positive supercoils following replication stress and inhibition of Topoisomerase 2 on telomeres. TRF2 depletion caused both telomere relaxation and an increase in positive supercoils while the inhibition of Histone Deacetylase I and II by TSA only caused telomere relaxation. Moving outside telomeres, we also observed a build-up of positive supercoils on the FRA3B fragile site following replication stress, suggesting a topological model of DNA fragility for this site.

Funder

Fondation ARC pour la recherche contre le cancer

INCa

ANR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3