Properties and Functional Analysis of Two Chorismate Mutases from Maritime Pine

Author:

de la Torre Fernando1ORCID,Medina-Morales Beatriz1,Blanca-Reyes Irene1ORCID,Pascual M. Belén1ORCID,Ávila Concepción1ORCID,Cánovas Francisco M.1ORCID,Castro-Rodríguez Vanessa1

Affiliation:

1. Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain

Abstract

Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.

Funder

Ministry of Science and Innovation

Spanish Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3