Author:
Huang Fen,Cao Jianhua,Zhu Tongbin,Fan Mingzhu,Ren Mengmeng
Abstract
In karst landscapes, soil CO2 is a key factor in weathering processes and carbon cycling, where its distribution and migration characteristics directly affect fluxes in carbon source–sink dynamics. We measured the CO2 emission and dissolution rates of carbonate tablets in calcareous soil developed from limestone and red soil developed from clastic rock, in karst and non-karst subtropical forests, in Guilin, southwest China between 2015 and 2018, to analyze their CO2 transfer characteristics and source–sink effects. The results showed similar average soil respiration rates between calcareous soil and red soil, with an average CO2 emission flux of 1305 and 1167 t C km−2 a−1, respectively. Carbonate tablet dissolution rates were bidirectional with increasing depth and were greater in red soil than calcareous soil, averaging 13.88 ± 5.42 and 7.20 ± 2.11 mg cm−2 a−1, respectively. CO2 concentration was bidirectional with increasing soil depth, reaching a maximum at the base of the soil–atmosphere interface (50–60 cm), and the bidirectional gradient was more distinctive in red soil. Change in the carbon isotope value of soil CO2 was also bidirectional in calcareous soils, for which the overall average was 0.87‰ heavier in calcareous than red soil. The carbon sink in calcareous soil in karst regions was estimated to be 11.97 times that of red soil in non-karst regions, whereas its role as a carbon source is just 1.12 times that of red soil, thus indicating the key role of karst soil in the reduction of atmospheric CO2.
Funder
National Natural Science Foundation of China
Guangxi Natural Science Foundation
National Key Research Projects
China Geological Survey
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献