Abstract
The effects of on-road disturbances on the aerodynamic drag are attracting attention in order to accurately evaluate the fuel efficiency of an automobile on a road. The present study investigated the effects of cornering motion on automobile aerodynamics, especially focusing on the aerodynamic drag. Using a towing tank facility, measurements of the fluid-dynamic force acting on Ahmed models during steady-state cornering were conducted in water. The investigation included Ahmed models with slant angles θ = 25° and 35°, reproducing the wake structures of two different types of automobiles. The drag increase due to steady-state cornering motion was experimentally measured, and showed good agreement with previous numerical research, with the measurements conducted at a Reynolds number of 6 × 105, based on the model length. The Ahmed model with θ = 35° showed a greater drag increase due to the steady-state cornering motion than that with θ = 25°, and it reached 15% of the total drag at a corner with a radius that was 10 times the vehicle length. The results indicated that the effect of the cornering motion on the automobile aerodynamics would be more important, depending on the type of automobile and its wake characteristics.
Funder
Japan Society for the Promotion of Science
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献