Abstract
This work investigates an innovative low-voltage (<60 V) hybrid device that enables engine boosting and downsizing in addition to mild hybrid functionalities such as regenerative braking, start-stop, and torque assist. A planetary gear set and a brake permit the power split supercharger (PSS) to share a 9 kW motor between supercharging the engine and direct torque supply to the crankshaft. In contrast, most e-boosting schemes use two separate motors for these two functionalities. This single motor structure restricts the PSS operation to only one of the supercharging or parallel hybrid modes; therefore, an optimized decision making strategy is necessary to select both the device mode and its power split ratio. An adaptive equivalent consumption minimization strategy (A-ECMS), which uses the battery state of charge (SoC) history to adjust the equivalence factor, is developed for energy management of the PSS. The A-ECMS effectiveness is compared against a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS reduces vehicle fuel consumption by 18.4% over standard FTP75 cycle, compared to a baseline turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8% compared to the baseline.
Funder
Advanced Research Projects Agency - Energy
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference20 articles.
1. Hybrid Electric Vehicles: Architecture and Motor Drives
2. HyBoost: An Intelligently Electrified Optimised Downsized Gasoline Engine Concept;King,2013
3. Volvo
https://www.volvocars.com
4. A Review of Optimal Energy Management Strategies for Hybrid Electric Vehicle
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献