Nature-Inspired Algorithm Implemented for Stable Radial Basis Function Neural Controller of Electric Drive with Induction Motor

Author:

Kaminski MarcinORCID

Abstract

The main point of this paper was to perform the design process for and verify the properties of an adaptive neural controller implemented for a real nonlinear object—an electric drive with an Induction Motor (IM). The controller was composed as a parallel combination of the classical Proportional-Integral (PI) structure, and the second part was based on Radial Basis Function Neural Networks (RBFNNs) with the on-line recalculation of the weight layer. The algorithm for the adaptive element of the speed controller contained two parts in parallel. The first of them was dedicated for the main path of the neural network calculations. The second realized the equations of the adaptation law. The stability of the control system was provided according to the Lyapunov theorem. However, one of the main issues described in this work is the optimization of the constant part of the analyzed parallel speed controller. For this purpose, the Grey Wolf Optimizer (GWO) was applied. A deep analysis of the data processing during the calculations of this technique is shown. The implemented controller, based on the theory of neural networks, is an adaptive system that allows precise motor control. It ensures the precise and dynamic response of the electric drive. The theoretical considerations were firstly verified during the simulations. Then, experimental tests were performed (using a dSPACE1103 card and an induction machine with a rated power of 1.1 kW).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3