Author:
Zhu Zhennan,Liang Kun,Chen Xinwen,Meng Zhongwei,He Wenbin,Song Hao
Abstract
Methanol is hygroscopic in a gaseous state and is a promising alternative fuel for internal combustion engines. It is understood that adding water can improve the antiknock performance for spark ignition engines, but this will also affect the flame speed and stability. In this work, laminar flame characteristics of methanol/water/air mixtures were experimentally investigated at a temperature range of 380–450 K, a pressure range of 1–4 bar, and water fractions (vaporous water molar fraction in the water–methanol fuel gas) of 0–40%. The results show that laminar burning velocity increases with temperature but decreases with pressure. The burning velocity decreases linearly with water fraction at a stoichiometric ratio. For rich mixtures and high pressures, the laminar flames tend to be more sensitive to stretch and, thus, more prone to being unstable. Increasing the water fraction can slightly increase the Markstein length. Increasing the initial pressure enhances the general flame instability, while increasing the initial temperature suppresses the general flame instability. Increasing the water fraction can lead to a decreasing thermal expansion ratio and an elevated flame thickness, both of which can lead to a suppression of hydrodynamic instability. An increase in the water fraction decreases the Lewis number, resulting in preferential diffusion instability. There is no direct relationship between the onset of cellularity and general flame instability.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献