Abstract
Earthing and protective devices such as line surge arrestors (LSAs) play an important role in areas with high lightning occurrence for overhead HVAC lines’ performance. A lightning stroke of high magnitude can lead to back flash-overs, and the resultant power surge on the phase conductor can cause instigate the line breaker operating to extinguish the power surge. This operation of the protective devices leads to consumer interruptions on the network, a loss of production, and negatively affects the economy. Studies have shown that reducing an earthing system’s values, which itself is costly, may not be sufficient to prevent back flashover and the associated customer production cost loss. A code was developed to determine the possibility of back flashover and the cost of various earthing schemes utilizing the MATLAB software analysis tool. This paper determines the possibility of a back flashover for various combinations of lightning strokes and earthing profiles. Tower Footing Resistances as low as 9.8 Ω can cause back flashover, provided the lightning stroke exceeds 12 kA. Furthermore, the paper presents and discusses an innovative hybrid power line protection scheme, which estimates and considers the high cost associated with establishing an earthing system; it examines the impracticality of re-engineering an earthing scheme for implementation and results obtained by the inclusion of lightning surge arrester’s (LSA). The cost-saving resulting from dips is also established over 25 years for an 88 kV line, and the breakeven point is established. The results showed that the best scenario would be to reduce the tower footing resistance to 29.1 Ω and install 11 LSA per phase.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference20 articles.
1. Improving Overhead HV AC Line Performance using Line Surge Arrestors under Lightning Conditions with economic analysis;Singh;Int. J. Appl. Eng. Res.,2019
2. Using Fall-of-Potential Measurements to Improve Deep Soil Resistivity Estimates
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献