Mixture Complexity and Its Application to Gradual Clustering Change Detection

Author:

Kyoya ShunkiORCID,Yamanishi KenjiORCID

Abstract

We consider measuring the number of clusters (cluster size) in the finite mixture models for interpreting their structures. Many existing information criteria have been applied for this issue by regarding it as the same as the number of mixture components (mixture size); however, this may not be valid in the presence of overlaps or weight biases. In this study, we argue that the cluster size should be measured as a continuous value and propose a new criterion called mixture complexity (MC) to formulate it. It is formally defined from the viewpoint of information theory and can be seen as a natural extension of the cluster size considering overlap and weight bias. Subsequently, we apply MC to the issue of gradual clustering change detection. Conventionally, clustering changes have been regarded as abrupt, induced by the changes in the mixture size or cluster size. Meanwhile, we consider the clustering changes to be gradual in terms of MC; it has the benefits of finding the changes earlier and discerning the significant and insignificant changes. We further demonstrate that the MC can be decomposed according to the hierarchical structures of the mixture models; it helps us to analyze the detail of substructures.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous Model Selection;Learning with the Minimum Description Length Principle;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3