Gemini-Assisted Deep Learning Classification Model for Automated Diagnosis of High-Resolution Esophageal Manometry Images

Author:

Popa Stefan Lucian1ORCID,Surdea-Blaga Teodora1ORCID,Dumitrascu Dan Lucian1,Pop Andrei Vasile1ORCID,Ismaiel Abdulrahman1ORCID,David Liliana1ORCID,Brata Vlad Dumitru2ORCID,Turtoi Daria Claudia2ORCID,Chiarioni Giuseppe34,Savarino Edoardo Vincenzo5ORCID,Zsigmond Imre6,Czako Zoltan7ORCID,Leucuta Daniel Corneliu8

Affiliation:

1. Second Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania

2. Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

3. Il Cerchio Med Global Healthcare, Verona Center, 37100 Verona, Italy

4. UNC Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

5. Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy

6. Faculty of Mathematics and Computer Science, Babes-Bolyai University, 400347 Cluj-Napoca, Romania

7. Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

8. Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania

Abstract

Background/Objectives: To develop a deep learning model for esophageal motility disorder diagnosis using high-resolution manometry images with the aid of Gemini. Methods: Gemini assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. Results: The model demonstrated an overall precision of 0.89 on the testing set, with an accuracy of 0.88, a recall of 0.88, and an F1-score of 0.885. It presented better results for multiple categories, particularly in the panesophageal pressurization category, with precision = 0.99 and recall = 0.99, yielding a balanced F1-score of 0.99. Conclusions: This study demonstrates the potential of artificial intelligence, particularly Gemini, in aiding the creation of robust deep learning models for medical image analysis, solving not just simple binary classification problems but more complex, multi-class image classification tasks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3