Abstract
Background and Objectives: A significant role was played by costimulatory molecules in renal cancer. However, the lncRNAs regulating costimulatory molecules have not been fully investigated. Materials and Methods: Data from the next-sequence file and clinical data were downloaded from the Cancer Genome Atlas (TCGA) database. All analyses were conducted using the R and GraphPad Prism software. Results: A total of 1736 costimulatory molecule-related lncRNAs were determined under the threshold of |Cor| > 0.5 and p-value < 0.001. Furthermore, a prognosis prediction signature consisting of five lncRNAs: LINC00941, AC016773.1, AL162171.1, HOTAIRM1, and AL109741.1 was established with great prediction ability. By combining risk score and clinical parameters, a nomogram plot was constructed for better clinical practice. A biological enrichment analysis indicated that E2F targets, coagulation, IL6/JAK/STAT3 signaling, G2/M checkpoint, and allograft rejection pathways were activated in high-risk patients. Furthermore, a higher infiltration level of resting CD4+ T cell, M2 macrophage, and resting mast cells, while a lower CD8+ T cell infiltration was observed in high-risk patients. It is worthy of note that, low-risk patients might respond better to PD-1 checkpoint therapy. A correlation analysis of LINC00941 revealed that it was positively correlated with Th2 cells, Th1 cells, macrophages, and Treg cells, but negatively correlated with Th17 cells. A pathway enrichment analysis indicated that the pathways of the inflammatory response, G2M checkpoint, and IL6/JAK/STAT3 signaling were significantly activated in patients with high LINC00941 expression. In vitro experiments indicated that LINC00941 can enhance the malignant biological behaviors of renal cancer cells. Conclusions: Our study established a costimulatory molecule-related lncRNAs-based prognosis model with a great prediction prognosis. In addition, LINC00941 could enhance the malignant biological behaviors of renal cancer cells.
Funder
Institute Level Project of HwaMei Hospital
Ningbo “Science and Technology Innovation 2025” Major Projects
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献